
Modeling and Simulating
Free/Open Source Software

Development Processes

Walt Scacchi
Institute for Software Research

School of Information and Computer Science
University of California, Irvine

Irvine, CA 92697-3425
Wscacchi@ics.uci.edu

mailto:Wscacchi@ics.uci.edu

Overview

• Background
• Results from recent studies of F/OSS
• F/OSS processes
• Implications for Software Process

Modeling and Simulation
• Conclusions

What is free/open source software
development?

• Free (as in “freedom”) vs. open source
– Freedom to access, browse/view, study, modify and

redistribute the source code
– Free is always open, but open is not always free

• F/OSSD is not “software engineering”
– Different: F/OSSD can be faster, better, and cheaper than SE

• F/OSSD involves more software development tools, Web
resources, and personal computing resources

Who is investing in OSSD?
• Large corporations: (IT and Financial)

– IBM-Eclipse, Sun-NetBeans and OpenOffice, HP-Gelato,
Apple-Darwin, Microsoft Research-Rotor, SAP-DB, etc.

– Barclays Global Investors, DKW, Merrill Lynch, UBS
• Mid-size corporations:

– RedHat, Novell, Borland, BEA Systems
• Small (start-up) companies:

– ActiveState (now part of Sophos), Collab.Net, Jabber,
Ximian (now part of Novell), JBoss, Compiere, etc.

• Government agencies:
– U.S.: DoD, Energy, NSF

Findings from F/OSS Studies

• CIO 2002-2003:
– OSS primarily for new system deployments
– OSS benefits

• enable lower TCO
• lower capital investment
• greater reliability

– OSS weaknesses:
• lack of in-house skills or skills in labor market,
• lack of vendor support or vendor viability
• switching costs

Findings from F/OSSD Studies

• Hars and Ou 2002:
– >60% of F/OSS developers work on 2-10 F/OSS

projects
• Madey, et al. 2003:

– <5% of OSS projects on SourceForge.net sustained;
>90% have only one contributor (i.e., Power Law)

• Nichols and Twidale 2003:
– Usability of F/OSS systems generally neglected

• Scacchi 2002-2004:
– Largest F/OSSD projects sustain exponential growth;

most F/OSSD projects fail to grow to any sustainable
effort

Sample processes for F/OSSD

• Requirements and design
• Configuration management and work coordination
• Maintenance/Evolution
• Project management/career development
• Software technology transfer and licensing

F/OSS Processes for Requirements or
Design

• F/OSS Requirements/Designs
– Not explicit, not formal
– Downstream output, not upstream input

• F/OSS Requirements/Designs are embedded
within “informalisms”
– Example OSS informalisms to follow (as screenshot

displays)

• F/OSS Requirements/Design processes are
different from their SE counterparts.

SE vs. F/OSS processes for
Requirements

• Post-hoc assertion
• Reading, sense-making,

accountability
• Continually emerging

webs of discourse
• Condensing and hardening

discourse
• Global access to discourse

• Elicitation
• Analysis

• Specification and
modeling

• Validation

• Communicating and
managing

Retrospective
requirements
specification

example

Configuration management and work
coordination

• Use CM to coordinate and control who gets to update
what part of the system
– Many F/OSSD projects use CVS (single centralized code

repository with update locks) and frequent releases (daily
releases on active projects)

– Linux Kernel: BitKeeper (multiple parallel builds and
release repositories)

– Collab.Net and Tigris.org: Subversion (CVS++)
– Apache: Single major release, with frequent “patch”

releases (e.g., “A patchy server”)
– GNU arch: Bitkeeper + Subversion + (more)

Concurrent
version

system (CVS)
for coordinating

source code
updates

Evolution: Reinvention,
redistribution, and revitalization

• Overall evolutionary dynamic of F/OSSD is
reinvention
– Reinvention enables continuous improvement

• F/OSS evolve through minor mutations
– Expressed, recombined, redistributed via incremental releases

• F/OSS systems co-evolve with their development
community
– Success of one depends on the success of the other

• Closed legacy systems may be revitalized via opening
and redistribution of their source
– When enthusiastic user-developers want their cultural experience with

such systems to be maintained.

Revitalizing
legacy

applications
via

open
source

example

Project management and career
development

• F/OSSD projects self-organize as a layered
meritocracy via virtual project management
– Meritocracies embrace incremental mutations over

radical innovations
– VPM requires people to act in leadership roles based on

skill, availability, and belief in project community

• F/OSS developers want to have fun, exercise their
technical skill, try out new kinds of systems to
develop, and/or interconnect multiple F/OSSD
projects (freedom of choice and expression).

A layered meritocracy and role
hierarchy for F/OSSD

(images from A.J. Kim, Community Building on the
Web, 2000)

Virtual
project

management
example

Software technology transfer and
licensing

• F/OSS technology transfer from existing
Web sites is a community and team building
process
– Not (yet) an engineering process
– Enables unanticipated applications and uses
– Enables F/OSSD to persist without centrally

planned and managed corporate software
development centers

Example
of F/OSS

technology transfer
that enabled

creation of new
kind of application
(e.g., online virtual

dancing)

An OSS Ecosystem: a socio-technical community
and infrastructure for tech transfer and inter-project

coordination

Free/OSS licenses
• Reiterate and institutionalize F/OSS culture

(values, norms, and beliefs)
– GNU Public License (GPL) for free software
– More than 35 other open source licenses

(http://opensource.org)
– “Creative Commons” Project at Stanford Law

School developing public license framework
• F/OSS culture affects technical choices for

tool selection, integration, and
interoperability options

Implications
• F/OSSD is a community building process

– not just a technical development process
– F/OSS peer review creates a community of peers

• F/OSSD processes often iterate daily versus
infrequent singular (milestone) Software Life
Cycle Engineering events
– F/OSSD: frequent, rapid cycle time (easier to

improve) vs.
– SLC: infrequent, slow cycle time (harder to improve)

Process Modeling and Simulation
Implications

• F/OSS provides new types and new kinds of
processes to model and simulate

• F/OSS process modeling and simulation
requires empirical approaches

• New challenges in modeling and simulating
what affects the productivity, quality, and
cost of F/OSS development

• F/OSS process models and simulation
should also be F/OSS

Process Modeling and Simulation
Implications

• Understanding and modeling software processes
in large F/OSS projects
– may require automated process discovery techniques
– spanning software ecosystem

• F/OSS processes (still) need to be modeled as
narrative, hypermedia, and computational models.

• Modeling large, aggregated F/OSS projects likely
to require advances in software process modeling
tools and techniques.

Conclusions

• F/OSS processes are different than
traditional software engineering processes
– not better, not worse, but different and new
– more social, more accessible, more convivial

• F/OSS systems need, but may not seek, the
benefits from classic software engineering.

Open source
software research

Web site at
UCI

Acknowledgements

• Project collaborators:
– Mark Ackerman, UMichigan, Ann Arbor
– Les Gasser, UIllinois, Urbana-Champaign
– John Noll, Santa Clara University
– Margaret Ellliot, Chris Jensen, UCI-ISR
– Julia Watson, The Ohio State University

• Funding support:
– National Science Foundation, ITR#0083075,

ITR#0205679, ITR#0205724, and ITR#0350754.
– No endorsement implied.

References
• Elliott, M. and Scacchi, W., Free Software Development:

Cooperation and Conflict in A Virtual Organizational
Culture, in S. Koch (ed.), Free/Open Source Software
Development, Idea Publishing, to appear, 2004.

• A. Hars and S. Ou, Working for free? Motivations for
participating in open source projects, International Journal
of Electronic Commerce, 6(3), Spring 2002.

• G. Madey, V. Freeh, and R. Tynan, Modeling the F/OSS
Community: A Quantitative Investigation, in Free/Open
Source Software Development, in Stephan Koch, (ed.) Idea
Publishing, forthcoming.

• D.M. Nichols & M.B. Twidale, The Usability of Open
Source Software, First Monday, 8(1), January 2003.

References
see http://www.isr.uci.edu/research-open-source.html

• C. Jensen and W. Scacchi, Discovering, Modeling, and Reenacting
Open Source Software Development Processes, Institute for
Software Research, March 2004.

• C. Jensen and W. Scacchi, Process Modeling the Web Information
Infrastructure, Proc. 5th. Software Process Simulation and Modeling
Workshop, Edinburgh, Scotland, May 2004.

• W. Scacchi, Understanding the Requirements for Developing Open
Source Software, IEE Proceedings--Software, 149(1), 24-39, 2002.

• W. Scacchi, When is Free/Open Source Software Development
Faster, Better, and Cheaper than Software Engineering? Working
Paper, Institute for Software Research, UC Irvine, April 2003.

• W. Scacchi, Free/Open Source Software Development Practices in
the Computer Game Community, IEEE Software, Special Issue on
Open Source Software, 21(1), 59-67, January-February 2004.

• This presentation will be found at:
http://www.ics.uci.edu/~wscacchi/Presentations/ProSim04/

http://www.isr.uci.edu/research-open-source.html
http://www.ics.uci.edu/~wscacchi/Papers/New/Understanding-OS-Requirements.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/Understanding-OS-Requirements.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/Understanding-OS-Requirements.pdf
http://www.ics.uci.edu/%7Ewscacchi/Papers/New/Scacchi-BookChapter.pdf
http://www.ics.uci.edu/%7Ewscacchi/Papers/New/Scacchi-BookChapter.pdf
http://www.ics.uci.edu/%7Ewscacchi/Papers/New/FOSS-DevelopmentPractices.pdf
http://www.ics.uci.edu/%7Ewscacchi/Papers/New/FOSS-DevelopmentPractices.pdf

	Modeling and Simulating Free/Open Source Software Development Processes
	Overview
	What is free/open source software development?
	Who is investing in OSSD?
	Findings from F/OSS Studies
	Findings from F/OSSD Studies
	Sample processes for F/OSSD
	Retrospectiverequirementsspecification example
	Configuration management and work coordination
	Concurrentversion system (CVS) for coordinatingsource codeupdates
	Evolution: Reinvention, redistribution, and revitalization
	Revitalizinglegacyapplicationsvia open sourceexample
	Project management and career development
	A layered meritocracy and role hierarchy for F/OSSD
	Virtual projectmanagementexample
	Software technology transfer and licensing
	Example of F/OSStechnology transferthat enabled creation of newkind of application(e.g., online virtualdancing)
	An OSS Ecosystem: a socio-technical community and infrastructure for tech transfer and inter-project coordination
	Free/OSS licenses
	Implications
	Process Modeling and Simulation Implications
	Process Modeling and Simulation Implications
	Conclusions
	Open sourcesoftware researchWeb site atUCI
	Acknowledgements
	References
	References see http://www.isr.uci.edu/research-open-source.html

